

Safety Data Sheet

© 2025, 3M Company All rights reserved. Copying and/or downloading of this information for the purpose of properly utilizing 3M products is allowed provided that: (1) the information is copied in full with no changes unless prior written agreement is obtained from 3M, and (2) neither the copy nor the original is resold or otherwise distributed with the intention of earning a profit thereon.

Document group: 40-6701-3 **Version number:** 2.01

Issue Date: 24/07/2025 **Supersedes date:** 10/03/2025

This Safety Data Sheet has been prepared in accordance with the New Zealand, Hazardous Substances (Safety Data Sheets) Notice 2017.

SECTION 1: Identification

1.1. Product identifier

3M[™] Perfect-It[™] Gelcoat Medium Cutting Compound + Wax, 36105, 36106

Product Identification Numbers

60-4551-0932-6 60-4551-0933-4

7100210711 7100210899

1.2. Recommended use and restrictions on use

Recommended use

Automotive.

For Industrial or Professional use only

1.3. Supplier's details

Address: 3M New Zealand Ltd, 94 Apollo Drive, Rosedale 0632, Auckland

Telephone: (09) 477 4040

E Mail: innovation@nz.mmm.com

Website: 3m.co.nz

1.4. Emergency telephone number

24 hr Medical Emergency, National Poisons Centre, 0800 764 766 (0800 POISON)

SECTION 2: Hazard identification

Classified as hazardous in accordance with the relevant criteria of the HSNO Act 1996 and the Hazardous Substances (Hazard Classification) Notice 2020.

Refer to Section 14 of this Safety Data Sheet for product Dangerous Goods Classification.

2.1. Classification of the substance or mixture

Skin sensitisation: Category 1

3M[™] Perfect-It[™] Gelcoat Medium Cutting Compound + Wax, 36105, 36106

Carcinogenicity: Category 2 Reproductive Toxicity: Category 2

Hazardous to the aquatic environment chronic: Category 3

2.2. Label elements SIGNAL WORD

Warning

Symbols:

Exclamation mark | Health Hazard |

Pictograms

HAZARD STATEMENTS:

H317 May cause an allergic skin reaction. H351 Suspected of causing cancer.

H361 Suspected of damaging fertility or the unborn child.

H412 Harmful to aquatic life with long lasting effects.

PRECAUTIONARY STATEMENTS

General

P101 If medical advice is needed, have product container or label at hand.

P102 Keep out of reach of children.

Prevention

P201 Obtain special instructions before use.

P202 Do not handle until all safety precautions have been read and understood.

P261 Avoid breathing dust/fume/gas/mist/vapours/spray.

P272 Contaminated work clothing should not be allowed out of the workplace.

P273 Avoid release to the environment.

P280E Wear protective gloves.

Response

P302 + P352 IF ON SKIN: Wash with plenty of soap and water.
P308 + P313 IF exposed or concerned: Get medical advice/attention.
P333 + P313 If skin irritation or rash occurs: Get medical advice/attention.
P362 + P364 Take off contaminated clothing and wash it before reuse.

Storage

P405 Store locked up.

Disposal

P501 Dispose of contents/container via an approved hazardous waste disposal contractor.

2.3. Other hazards

Aspiration classification does not apply due to the viscosity of the product.

SECTION 3: Composition/information on ingredients

Ingredient	CAS Nbr	% by Weight
Water	7732-18-5	30 - 60
Aluminum Oxide (non-fibrous)	1344-28-1	10 - 30
Hydrotreated Light Petroleum Distillates	64742-47-8	10 - 30
Polyethylene Glycol Sorbitan Monooleate	9005-65-6	3 - 7
Polyethylene-Polypropylene Glycol	9003-11-6	1 - 5
Amino Alkyl Polysiloxane	Trade Secret	1 - 5
Poly(Dimethylsiloxane)	63148-62-9	1 - 5
Mineral Oil	8042-47-5	0.5 - 1.5
Glycerin	56-81-5	0.5 - 1.5
Diethanolamine	111-42-2	<= 0.25
Methylisothiazolinone	2682-20-4	< 0.009
2-Octyl-3(2H)-Isothiazolone	26530-20-1	< 0.007

SECTION 4: First aid measures

4.1. Description of first aid measures

Inhalation

Remove person to fresh air. If you feel unwell, get medical attention.

Skin contact

Immediately wash with soap and water. Remove contaminated clothing and wash before reuse. If signs/symptoms develop, get medical attention.

Eye contact

No need for first aid is anticipated. If signs/symptoms persist, get medical attention.

If swallowed

Rinse mouth. If you feel unwell, get medical attention.

4.2. Most important symptoms and effects, both acute and delayed

Allergic skin reaction (redness, swelling, blistering, and itching).

4.3. Indication of any immediate medical attention and special treatment required

Not applicable

SECTION 5: Fire-fighting measures

5.1. Suitable extinguishing media

Use a fire fighting agent suitable for the surrounding fire.

5.2. Special hazards arising from the substance or mixture

None inherent in this product.

Hazardous Decomposition or By-Products

Substance

Carbon monoxide.

Carbon dioxide.

Condition

During combustion.

During combustion.

5.3. Special protective actions for fire-fighters

No special protective actions for fire-fighters are anticipated.

5.4. Hazchem code: Not applicable.

SECTION 6: Accidental release measures

6.1. Personal precautions, protective equipment and emergency procedures

Use personal protective equipment based on the results of an exposure assessment. Refer to Section 8 for PPE recommendations. If anticipated exposure resulting from an accidental release exceeds the protective capabilities of the PPE listed in Section 8, or are unknown, select PPE that offers an appropriate level of protection. Consider the physical and chemical hazards of the material when doing so. Examples of PPE ensembles for emergency response could include wearing bunker gear for a release of flammable material; wearing chemical protective clothing if the spilled material is a corrosive, a sensitizer, a significant dermal irritant, or can be absorbed through the skin; or donning a positive pressure supplied-air respirator for chemicals with inhalation hazards. For information regarding physical and health hazards, refer to sections 2 and 11 of the SDS. Evacuate area. Ventilate the area with fresh air. For large spill, or spills in confined spaces, provide mechanical ventilation to disperse or exhaust vapors, in accordance with good industrial hygiene practice.

6.2. Environmental precautions

Avoid release to the environment. For larger spills, cover drains and build dykes to prevent entry into sewer systems or bodies of water.

6.3. Methods and material for containment and cleaning up

Working from around the edges of the spill inward, cover with bentonite, vermiculite, or commercially available inorganic absorbent material. Mix in sufficient absorbent until it appears dry. Remember, adding an absorbent material does not remove a physical, health, or environmental hazard. Collect as much of the spilled material as possible. Place in a closed container approved for transportation by appropriate authorities. Clean up residue with an appropriate solvent selected by a qualified and authorised person. Ventilate the area with fresh air. Read and follow safety precautions on the solvent label and Safety Data Sheet. Seal the container. Dispose of collected material as soon as possible in accordance with applicable local/regional/national/international regulations.

SECTION 7: Handling and storage

Refer to Section 15 - Controls for more information

7.1. Precautions for safe handling

Keep out of reach of children. Do not handle until all safety precautions have been read and understood. Avoid breathing dust/fume/gas/mist/vapours/spray. Do not get in eyes, on skin, or on clothing. Do not eat, drink or smoke when using this product. Wash thoroughly after handling. Contaminated work clothing should not be allowed out of the workplace. Avoid release to the environment. Wash contaminated clothing before reuse. Use personal protective equipment (eg. gloves, respirators...) as required.

7.2. Conditions for safe storage including any incompatibilities

No special storage requirements.

7.3. Certified handler

Not required

SECTION 8: Exposure controls/personal protection

8.1 Control parameters

Occupational exposure limits

If a component is disclosed in section 3 but does not appear in the table below, an occupational exposure limit is not available for the component.

Ingredient	CAS Nbr	Agency	Limit type	Additional comments
Diethanolamine	111-42-2	ACGIH	TWA(inhalable fraction and	A3: Confirmed animal

3M[™] Perfect-It[™] Gelcoat Medium Cutting Compound + Wax, 36105, 36106

			vapor):1 mg/m3	carcinogen, Danger of cutaneous absorption
Diethanolamine	111-42-2	New Zealand WES	TWA(8 hours): 13 mg/m3 (3 ppm)	Skin
Aluminum, insoluble compounds	1344-28-1	ACGIH	TWA(respirable fraction):1 mg/m3	A4: Not class. as human carcinogin
Dust, inert or nuisance	1344-28-1	New Zealand WES	TWA(as respirable dust)(8 hours):3 mg/m3;TWA(as inhalable dust)(8 hours):10 mg/m3	C
Glycerin	56-81-5	New Zealand WES	TWA(as mist)(8 hours):10 mg/m3	

ACGIH: American Conference of Governmental Industrial Hygienists

AIHA: American Industrial Hygiene Association

CMRG: Chemical Manufacturer's Recommended Guidelines New Zealand WES: New Zealand Workplace Exposure Standards.

TWA: Time-Weighted-Average STEL: Short Term Exposure Limit ppm: parts per million mg/m³: milligrams per cubic metre

CEIL: Ceiling

8.2. Exposure controls

8.2.1. Engineering controls

No engineering controls required.

8.2.2. Personal protective equipment (PPE)

Eye/face protection

None required.

Skin/hand protection

Select and use gloves and/or protective clothing approved to relevant local standards to prevent skin contact based on the results of an exposure assessment. Selection should be based on use factors such as exposure levels, concentration of the substance or mixture, frequency and duration, physical challenges such as temperature extremes, and other use conditions. Consult with your glove and/or protective clothing manufacturer for selection of appropriate compatible gloves/protective clothing. Note: Nitrile gloves may be worn over polymer laminate gloves to improve dexterity.

Gloves made from the following material(s) are recommended: Polymer laminate

If this product is used in a manner that presents a higher potential for exposure (e.g., spraying, high splash potential, etc.), then use of a protective apron may be necessary. See recommended glove material(s) for determining appropriate apron material(s). If a glove material is not available as an apron, polymer laminate is a suitable option.

The following protective clothing material(s) are also recommended:

Respiratory protection

None required.

SECTION 9: Physical and chemical properties

9.1. Information on basic physical and chemical properties

Physical state	Liquid.
Specific Physical Form:	Gel
Colour	White

Odour	Slight Solvent
Odour threshold	No data available.
pH	7.5 - 9
Melting point/Freezing point	No data available.
Boiling point/Initial boiling point/Boiling range	No data available.
Flash point	No flash point
Evaporation rate	No data available.
Flammability	Not applicable.
Flammable Limits(LEL)	No data available.
Flammable Limits(UEL)	No data available.
Vapour pressure	No data available.
Relative Vapour Density	No data available.
Density	1.1 - 1.1 kg/l [<i>Ref Std:</i> WATER=1]
Relative density	1.05 - 1.1 [<i>Ref Std</i> :WATER=1]
Water solubility	No data available.
Solubility- non-water	No data available.
Partition coefficient: n-octanol/water	No data available.
Autoignition temperature	No data available.
Decomposition temperature	No data available.
Kinematic Viscosity	32,558 mm ² /sec
Volatile organic compounds (VOC)	14.5 % weight [Test Method:calculated per CARB title 2]
Percent volatile	59.3 % weight
VOC less H2O & exempt solvents	315 g/l [Test Method:calculated SCAQMD rule 443.1]
Molecular weight	Not applicable.

Partiala Characteristics	Not applicable
Particle Characteristics	ұғон аррисадие.

SECTION 10: Stability and reactivity

10.1 Reactivity

This material is considered to be non reactive under normal use conditions

10.2 Chemical stability

Stable.

10.3 Possibility of hazardous reactions

Hazardous polymerisation will not occur.

10.4 Conditions to avoid

None known.

10.5 Incompatible materials

None known.

10.6 Hazardous decomposition products

Substance Condition

None known.

Refer to Section 5.2 for hazardous decomposition products during combustion.

SECTION 11: Toxicological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. In addition, toxicological data on ingredients may not be reflected in the material classification and/or the signs and symptoms of exposure, because an ingredient may be present below the threshold for labelling, an ingredient may not be available for exposure, or the data may not be relevant to the material as a whole.

11.1 Information on Toxicological effects

Signs and Symptoms of Exposure

Based on test data and/or information on the components, this material may produce the following health effects:

Inhalation

No known health effects.

Skin contact

Mild Skin Irritation: Signs/symptoms may include localized redness, swelling, itching, and dryness. Allergic skin reaction (non-photo induced): Signs/symptoms may include redness, swelling, blistering, and itching. May cause additional health effects (see below).

Eye contact

Contact with the eyes during product use is not expected to result in significant irritation.

Ingestion

Gastrointestinal irritation: Signs/symptoms may include abdominal pain, stomach upset, nausea, vomiting and diarrhoea. May cause additional health effects (see below).

Additional Health Effects:

Reproductive/Developmental Toxicity:

Contains a chemical or chemicals which can cause birth defects or other reproductive harm.

Carcinogenicity:

Contains a chemical or chemicals which can cause cancer.

Toxicological Data

If a component is disclosed in section 3 but does not appear in a table below, either no data are available for that endpoint or the data are not sufficient for classification.

Acute Toxicity

Name	Route	Species	Value
Overall product	Inhalation- Vapor(4 hr)		No data available; calculated ATE >50 mg/l
Overall product	Ingestion		No data available; calculated ATE >5,000 mg/kg
Aluminum Oxide (non-fibrous)	Dermal		LD50 estimated to be > 5,000 mg/kg
Aluminum Oxide (non-fibrous)	Inhalation- Dust/Mist (4 hours)	Rat	LC50 > 2.3 mg/l
Aluminum Oxide (non-fibrous)	Ingestion	Rat	LD50 > 5,000 mg/kg
Hydrotreated Light Petroleum Distillates	Ingestion	Rat	LD50 > 15,000 mg/kg
Hydrotreated Light Petroleum Distillates	Dermal	similar compoun ds	LD50 > 5,000 mg/kg
Polyethylene Glycol Sorbitan Monooleate	Dermal	Not available	LD50 > 5,000 mg/kg
Polyethylene Glycol Sorbitan Monooleate	Inhalation-	Rat	LC50 > 5.1 mg/l

	Dust/Mist (4 hours)		
Polyethylene Glycol Sorbitan Monooleate	Ingestion	Rat	LD50 20,000 mg/kg
Polyethylene-Polypropylene Glycol	Dermal	similar compoun ds	LD50 > 2,000 mg/kg
Polyethylene-Polypropylene Glycol	Ingestion	similar compoun ds	LD50 > 5,000 mg/kg
Poly(Dimethylsiloxane)	Dermal	Multiple animal species	LD50 > 2,000 mg/kg
Poly(Dimethylsiloxane)	Ingestion	Rat	LD50 > 5,000 mg/kg
Mineral Oil	Dermal	Rabbit	LD50 > 2,000 mg/kg
Mineral Oil	Ingestion	Rat	LD50 > 5,000 mg/kg
Glycerin	Dermal	Rabbit	LD50 estimated to be > 5,000 mg/kg
Glycerin	Ingestion	Rat	LD50 > 5,000 mg/kg
Diethanolamine	Dermal	Rabbit	LD50 8,180 mg/kg
Diethanolamine	Ingestion	Rat	LD50 1,410 mg/kg
Methylisothiazolinone	Dermal	Rat	LD50 242 mg/kg
Methylisothiazolinone	Inhalation- Dust/Mist (4 hours)	Rat	LC50 0.11 mg/l
Methylisothiazolinone	Ingestion	Rat	LD50 120 mg/kg
2-Octyl-3(2H)-Isothiazolone	Dermal	Rabbit	LD50 311 mg/kg
2-Octyl-3(2H)-Isothiazolone	Inhalation- Dust/Mist (4 hours)	Rat	LC50 0.27 mg/l
2-Octyl-3(2H)-Isothiazolone	Ingestion	Rat	LD50 125 mg/kg

ATE = acute toxicity estimate

Skin Corrosion/Irritation

Name	Species	Value
Aluminum Oxide (non-fibrous)	Rabbit	No significant irritation
Hydrotreated Light Petroleum Distillates	similar compoun ds	Mild irritant
Polyethylene Glycol Sorbitan Monooleate	Rabbit	No significant irritation
Polyethylene-Polypropylene Glycol	similar	No significant irritation
	compoun	
	ds	
Poly(Dimethylsiloxane)	Human	No significant irritation
	and	
	animal	
Mineral Oil	Rabbit	No significant irritation
Glycerin	Rabbit	No significant irritation
Diethanolamine	Rabbit	Irritant
Methylisothiazolinone	Rabbit	Corrosive
2-Octyl-3(2H)-Isothiazolone	Rabbit	Corrosive

Serious Eve Damage/Irritation

Name	Species	Value
Aluminum Oxide (non-fibrous)	Rabbit	No significant irritation
Hydrotreated Light Petroleum Distillates	similar compoun ds	No significant irritation
Polyethylene Glycol Sorbitan Monooleate	Rabbit	No significant irritation
Polyethylene-Polypropylene Glycol	similar compoun ds	No significant irritation
Poly(Dimethylsiloxane)	Rabbit	No significant irritation
Mineral Oil	Rabbit	Mild irritant

3MTM Perfect-ItTM Gelcoat Medium Cutting Compound + Wax, 36105, 36106

Glycerin	Rabbit	No significant irritation
Diethanolamine	Rabbit	Corrosive
Methylisothiazolinone	Rabbit	Corrosive
2-Octyl-3(2H)-Isothiazolone	similar	Corrosive
	health	
	hazards	

Sensitisation:

Skin Sensitisation

Name	Species	Value
Hydrotreated Light Petroleum Distillates	similar	Not classified
	compoun	
	ds	
Polyethylene Glycol Sorbitan Monooleate	Guinea	Not classified
	pig	
Polyethylene-Polypropylene Glycol	Guinea	Not classified
	pig	
Poly(Dimethylsiloxane)	Human	Not classified
	and	
	animal	
Mineral Oil	Guinea	Not classified
	pig	
Glycerin	Guinea	Not classified
	pig	
Diethanolamine	Human	Not classified
	and	
	animal	
Methylisothiazolinone	Human	Sensitising
	and	
	animal	
2-Octyl-3(2H)-Isothiazolone	Human	Sensitising
	and	
	animal	

Photosensitisation

Name	Species	Value
Methylisothiazolinone	Human	Not sensitizing
	and	
	animal	

Respiratory Sensitisation

For the component/components, either no data are currently available or the data are not sufficient for classification.

Germ Cell Mutagenicity

Name	Route	Value
Aluminum Oxide (non-fibrous)	In Vitro	Not mutagenic
Hydrotreated Light Petroleum Distillates	In Vitro	Not mutagenic
Polyethylene Glycol Sorbitan Monooleate	In Vitro	Not mutagenic
Polyethylene-Polypropylene Glycol	In Vitro	Not mutagenic
Poly(Dimethylsiloxane)	In Vitro	Not mutagenic
Poly(Dimethylsiloxane)	In vivo	Not mutagenic
Mineral Oil	In Vitro	Not mutagenic
Diethanolamine	In Vitro	Not mutagenic
Methylisothiazolinone	In vivo	Not mutagenic
Methylisothiazolinone	In Vitro	Some positive data exist, but the data are not sufficient for classification
2-Octyl-3(2H)-Isothiazolone	In Vitro	Not mutagenic
2-Octyl-3(2H)-Isothiazolone	In vivo	Not mutagenic

Carcinogenicity

Name	Route	Species	Value
Aluminum Oxide (non-fibrous)	Inhalation	Rat	Not carcinogenic
Polyethylene Glycol Sorbitan Monooleate	Ingestion	Rat	Some positive data exist, but the data are not sufficient for classification
Poly(Dimethylsiloxane)	Dermal	Mouse	Not carcinogenic
Poly(Dimethylsiloxane)	Ingestion	Mouse	Not carcinogenic
Mineral Oil	Dermal	Mouse	Not carcinogenic
Mineral Oil	Inhalation	Multiple animal species	Not carcinogenic
Glycerin	Ingestion	Mouse	Some positive data exist, but the data are not sufficient for classification
Diethanolamine	Dermal	Mouse	Carcinogenic.
Methylisothiazolinone	Dermal	Mouse	Not carcinogenic
Methylisothiazolinone	Ingestion	Rat	Not carcinogenic

Reproductive Toxicity

Reproductive and/or Developmental Effects

Name	Route	Value	Species	Test result	Exposure Duration
Polyethylene Glycol Sorbitan Monooleate	Ingestion	Not classified for female reproduction	Rat	NOAEL 6,666 mg/kg/day	3 generation
Polyethylene Glycol Sorbitan Monooleate	Ingestion	Not classified for male reproduction	Rat	NOAEL 6,666 mg/kg/day	3 generation
Polyethylene Glycol Sorbitan Monooleate	Ingestion	Not classified for development	Rat	NOAEL 5,000 mg/kg/day	during organogenesis
Poly(Dimethylsiloxane)	Ingestion	Not classified for development	Rat	NOAEL 3,800 mg/kg/day	during organogenesis
Poly(Dimethylsiloxane)	Dermal	Not classified for development	Rabbit	NOAEL 1,000 mg/kg/day	during organogenesis
Mineral Oil	Ingestion	Not classified for female reproduction	Rat	NOAEL 4,350 mg/kg/day	13 weeks
Mineral Oil	Ingestion	Not classified for male reproduction	Rat	NOAEL 4,350 mg/kg/day	13 weeks
Mineral Oil	Ingestion	Not classified for development	Rat	NOAEL 4,350 mg/kg/day	during gestation
Glycerin	Ingestion	Not classified for female reproduction	Rat	NOAEL 2,000 mg/kg/day	2 generation
Glycerin	Ingestion	Not classified for male reproduction	Rat	NOAEL 2,000 mg/kg/day	2 generation
Glycerin	Ingestion	Not classified for development	Rat	NOAEL 2,000 mg/kg/day	2 generation
Diethanolamine	Ingestion	Not classified for male reproduction	Rat	NOAEL 128 mg/kg/day	1 generation
Diethanolamine	Dermal	Not classified for development	Rabbit	NOAEL 100 mg/kg/day	during organogenesis
Diethanolamine	Inhalation	Not classified for development	Rat	NOAEL 0.05 mg/l	during organogenesis
Diethanolamine	Ingestion	Toxic to female reproduction	Rat	NOAEL 38 mg/kg/day	1 generation
Diethanolamine	Ingestion	Toxic to development	Rat	NOAEL 38 mg/kg/day	1 generation
Methylisothiazolinone	Ingestion	Not classified for female reproduction	Rat	NOAEL 10	2 generation

D 10.6.1

				mg/kg/day	
Methylisothiazolinone	Ingestion	Not classified for male reproduction	Rat	NOAEL 10	2 generation
				mg/kg/day	
Methylisothiazolinone	Ingestion	Not classified for development	Rat	NOAEL 15	during
-		-		mg/kg/day	organogenesis
2-Octyl-3(2H)-Isothiazolone	Ingestion	Not classified for development	Rabbit	NOEL 20	during
		_		mg/kg/day	organogenesis

Target Organ(s)

Specific Target Organ Toxicity - single exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Hydrotreated Light Petroleum Distillates	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification	similar health hazards	NOAEL Not available	
Diethanolamine	Inhalation	respiratory irritation	Some positive data exist, but the data are not sufficient for classification		NOAEL not available	
Diethanolamine	Ingestion	kidney and/or bladder	May cause damage to organs	Rat	NOAEL 200 mg/kg	
Diethanolamine	Ingestion	central nervous system depression	Some positive data exist, but the data are not sufficient for classification	Rat	LOAEL 200 mg/kg	not applicable
Diethanolamine	Ingestion	liver	Not classified	Rat	NOAEL 1,600 mg/kg	not applicable
Methylisothiazolinone	Inhalation	respiratory irritation	May cause respiratory irritation	similar health hazards	NOAEL Not available	
2-Octyl-3(2H)- Isothiazolone	Inhalation	respiratory irritation	May cause respiratory irritation	Rat	NOAEL Not available	

Specific Target Organ Toxicity - repeated exposure

Name	Route	Target Organ(s)	Value	Species	Test result	Exposure Duration
Aluminum Oxide (non-fibrous)	Inhalation	pneumoconiosis	Some positive data exist, but the data are not sufficient for classification	Human	NOAEL Not available	occupational exposure
Aluminum Oxide (non- fibrous)	Inhalation	pulmonary fibrosis	Not classified	Human	NOAEL Not available	occupational exposure
Hydrotreated Light Petroleum Distillates	Inhalation	liver	Not classified	Rat	NOAEL 6 mg/l	13 weeks
Hydrotreated Light Petroleum Distillates	Inhalation	kidney and/or bladder	Not classified	Rat	LOAEL 1.5 mg/l	13 weeks
Hydrotreated Light Petroleum Distillates	Inhalation	hematopoietic system	Not classified	Rat	NOAEL 6 mg/l	13 weeks
Hydrotreated Light Petroleum Distillates	Ingestion	liver	Not classified	Rat	NOAEL 1,000 mg/kg/day	13 weeks
Hydrotreated Light Petroleum Distillates	Ingestion	kidney and/or bladder	Not classified	Rat	LOAEL 100 mg/kg/day	13 weeks
Hydrotreated Light Petroleum Distillates	Ingestion	hematopoietic system eyes	Not classified	Rat	NOAEL 1,000 mg/kg/day	13 weeks
Polyethylene Glycol Sorbitan Monooleate	Ingestion	heart endocrine system gastrointestinal tract bone, teeth, nails, and/or hair hematopoietic system liver immune system nervous system kidney and/or bladder respiratory system	Not classified	Rat	NOAEL 4,132 mg/kg/day	90 days

Poly(Dimethylsiloxane)	Ingestion	eyes	Not classified	Rat	NOAEL 10% in the diet	90 days
Poly(Dimethylsiloxane)	Ingestion	respiratory system	Not classified	Rat	NOAEL 1% in the diet	90 days
Poly(Dimethylsiloxane)	Ingestion	gastrointestinal tract	Not classified	Multiple animal species	NOAEL 10% in the diet	90 days
Poly(Dimethylsiloxane)	Ingestion	hematopoietic system	Not classified	Rat	NOAEL 10% in the diet	90 days
Poly(Dimethylsiloxane)	Ingestion	heart liver kidney and/or bladder vascular system	Not classified	Rat	NOAEL 1% in the diet	90 days
Mineral Oil	Ingestion	hematopoietic system	Not classified	Rat	NOAEL 1,381 mg/kg/day	90 days
Mineral Oil	Ingestion	liver immune system	Not classified	Rat	NOAEL 1,336 mg/kg/day	90 days
Glycerin	Inhalation	respiratory system heart liver kidney and/or bladder	Not classified	Rat	NOAEL 3.91 mg/l	14 days
Glycerin	Ingestion	endocrine system hematopoietic system liver kidney and/or bladder	Not classified	Rat	NOAEL 10,000 mg/kg/day	2 years
Diethanolamine	Dermal	hematopoietic system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 63 mg/kg/day	13 weeks
Diethanolamine	Dermal	liver nervous system kidney and/or bladder	Not classified	Rat	NOAEL 500 mg/kg/day	13 weeks
Diethanolamine	Dermal	skin	Not classified	Rat	NOAEL 250 mg/kg/day	13 weeks
Diethanolamine	Dermal	heart endocrine system gastrointestinal tract bone, teeth, nails, and/or hair immune system muscles eyes respiratory system vascular system	Not classified	Rat	NOAEL 500 mg/kg/day	13 weeks
Diethanolamine	Inhalation	hematopoietic system liver kidney and/or bladder	Not classified	Rat	NOAEL 0.41 mg/l	13 weeks
Diethanolamine	Inhalation	respiratory system	Not classified	Rat	LOAEL 0.015 mg/l	13 weeks
Diethanolamine	Inhalation	heart skin endocrine system gastrointestinal tract bone, teeth, nails, and/or hair immune system muscles nervous system eyes vascular system	Not classified	Rat	NOAEL 0.41 mg/l	13 weeks
Diethanolamine	Ingestion	hematopoietic system	May cause damage to organs though prolonged or repeated exposure	Rat	NOAEL 15 mg/kg/day	13 weeks
Diethanolamine	Ingestion	nervous system	Some positive data exist, but the data are not sufficient for classification	Rat	NOAEL 57 mg/kg/day	13 weeks
Diethanolamine	Ingestion	endocrine system liver kidney and/or bladder heart skin gastrointestinal	Not classified	Rat	NOAEL 240 mg/kg/day	13 weeks

D. . . . 12 . C . 14

3M TM Perfect-It TM Gelcoat	Medium Cutting	Compound + Way	36105 36106

tract bone, teeth, nails, and/or hair immune system muscles eyes	
respiratory system	
vascular system	

Aspiration Hazard

Name	Value
Hydrotreated Light Petroleum Distillates	Aspiration hazard
Mineral Oil	Aspiration hazard

Please contact the address or phone number listed on the first page of the SDS for additional toxicological information on this material and/or its components.

SECTION 12: Ecological information

The information below may not be consistent with the material classification in Section 2 if specific ingredient classifications are mandated by a competent authority. Additional information leading to material classification in Section 2 is available upon request. In addition, environmental fate and effects data on ingredients may not be reflected in this section because an ingredient is present below the threshold for labelling, an ingredient is not expected to be available for exposure, or the data is considered not relevant to the material as a whole.

12.1. Toxicity

Ecotoxic to the aquatic environment.

Acute Aquatic Toxicity: Category 3 Chronic Aquatic Toxicity: Category 3

No product test data available.

Material	CAS Number	Organism	Type	Exposure	Test endpoint	Test result
	1344-28-1	N/A	Experimental	96 hours	LC50	>100 mg/l
fibrous)						
Aluminum	1344-28-1	Green algae	Experimental	72 hours	EC50	>100 mg/l
Oxide (non- fibrous)						
	1344-28-1	Water flea	Experimental	48 hours	LC50	>100 mg/l
Oxide (non- fibrous)						
Aluminum	1344-28-1	Green algae	Experimental	72 hours	NOEC	>100 mg/l
Oxide (non-						
fibrous)						
1 2	64742-47-8	Green algae	Experimental	72 hours	EL50	>1,000 mg/l
Light						
Petroleum						
Distillates						
1 2	64742-47-8	Rainbow trout	Experimental	96 hours	LL50	>1,000 mg/l
Light						
Petroleum						
Distillates						
J	64742-47-8	Water flea	Experimental	48 hours	EL50	>1,000 mg/l
Light						
Petroleum						
Distillates						
Hydrotreated	64742-47-8	Green algae	Experimental	72 hours	NOEL	1,000 mg/l

Light						
Petroleum						
Distillates	9005-65-6	Casan alasa	A = 01 = = = = =	70 h	EL 50	50.04
Polyethylene Glycol Sorbitan	9005-65-6	Green algae	Analogous Compound	72 hours	EL50	58.84 mg/l
Monooleate			Compound			
Polyethylene	9005-65-6	Zebra Fish	Analogous	96 hours	LL50	>100 mg/l
Glycol Sorbitan			Compound			
Monooleate						
Polyethylene	9005-65-6	Green algae	Analogous	72 hours	EL10	19.05 mg/l
Glycol Sorbitan			Compound			
Monooleate						
Polyethylene	9005-65-6	Water flea	Analogous	21 days	NOEL	10 mg/l
Glycol Sorbitan			Compound			
Monooleate	(2149 (2.0	NT/A	Data wat	N/A	NT/A	N/A
Poly(Dimethyls iloxane)	63148-62-9	N/A	Data not available or	N/A	N/A	N/A
noxane)			insufficient for			
			classification			
Polyethylene-	9003-11-6	N/A	Data not	N/A	N/A	N/A
Polypropylene	7005 11 0	14/21	available or	14/21	1771	1 1/1 1
Glycol			insufficient for			
			classification			
Glycerin	56-81-5	Rainbow trout	Experimental	96 hours	LC50	54,000 mg/l
Glycerin	56-81-5	Water flea	Experimental	48 hours	LC50	1,955 mg/l
Glycerin	56-81-5	Bacteria	Experimental	16 hours	NOEC	10,000 mg/l
Mineral Oil	8042-47-5	Water flea	Analogous	48 hours	EL50	>100 mg/l
			Compound			
Mineral Oil	8042-47-5	Bluegill	Experimental	96 hours	LL50	>100 mg/l
Mineral Oil	8042-47-5	Green algae	Analogous	72 hours	NOEL	100 mg/l
) f: 1 0:1	00.42.45.5	777 · 01	Compound	0.1 1	NORT	100 /1
Mineral Oil	8042-47-5	Water flea	Analogous	21 days	NOEL	>100 mg/l
Diethanolamin	111-42-2	Brine shrimp	Compound Experimental	24 hours	EC50	2 900 mg/l
e	111-42-2	Brine sirinip	Experimental	24 Hours	ECSU	2,800 mg/l
Diethanolamin	111-42-2	Diatom	Experimental	72 hours	EC50	86.96 mg/l
e	111 42 2	Diatom	Experimental	/2 Hours	Leso	00.90 mg/1
Diethanolamin	111-42-2	Green algae	Experimental	72 hours	ErC50	9.5 mg/l
e			Z.i.p • i i i i i i i i i i i i i i i i i i	, a notars) .e .mg/1
Diethanolamin	111-42-2	Rainbow trout	Experimental	96 hours	LC50	460 mg/l
e			1			
Diethanolamin	111-42-2	Sheepshead	Experimental	96 hours	LC50	>589 mg/l
e		Minnow				
Diethanolamin	111-42-2	Water flea	Experimental	48 hours	EC50	30.1 mg/l
e						
Diethanolamin	111-42-2	Diatom	Experimental	72 hours	NOEC	<16 mg/l
e		ļ				1
Diethanolamin	111-42-2	Green algae	Experimental	72 hours	ErC10	1.4 mg/l
e D: 1 1 :	111 42 2	777 / CI	E : . 1	01.1	NOEG	0.70 /1
Diethanolamin	111-42-2	Water flea	Experimental	21 days	NOEC	0.78 mg/l
e Diethanolamin	111-42-2	Activated	Experimental	30 minutes	EC10	>1,000 mg/l
e Dicuianioiamin	111-42-2	sludge	Experimental	30 minutes	ECIU	/ 1,000 IIIg/I
Diethanolamin	111-42-2	Plant	Experimental	21 days	EC50	1,632 mg/kg (Dry
210manoranini	1	11 10111	12/1Permiemun	1-1 days	12000	11,002 mg/ng (191)

е						Weight)
Diethanolamin e	111-42-2	Redworm	Experimental	63 days	EC50	776 mg/kg (Dry Weight)
Diethanolamin e	111-42-2	Springtail	Experimental	28 days	EC50	4,205 mg/kg (Dry Weight)
Methylisothiaz olinone	2682-20-4	Diatom	Experimental	72 hours	ErC50	0.099 mg/l
Methylisothiaz olinone	2682-20-4	Green algae	Experimental	96 hours	ErC50	0.23 mg/l
Methylisothiaz olinone	2682-20-4	Mysid Shrimp	Experimental	96 hours	LC50	1.81 mg/l
Methylisothiaz olinone	2682-20-4	Sheepshead Minnow	Experimental	96 hours	LC50	25.1 mg/l
Methylisothiaz olinone	2682-20-4	Water flea	Experimental	48 hours	LC50	0.934 mg/l
Methylisothiaz olinone	2682-20-4	Blackworm	Experimental	28 days	NOEC	25 mg/kg (Dry Weight)
Methylisothiaz olinone	2682-20-4	Diatom	Experimental	72 hours	ErC10	0.04 mg/l
Methylisothiaz olinone	2682-20-4	Fathead minnow	Experimental	33 days	NOEC	2.1 mg/l
Methylisothiaz olinone	2682-20-4	Green algae	Experimental	96 hours	NOEC	0.12 mg/l
Methylisothiaz olinone	2682-20-4	Water flea	Experimental	21 days	NOEC	0.044 mg/l
Methylisothiaz olinone	2682-20-4	Activated sludge	Experimental	3 hours	EC50	41 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Diatom	Experimental	72 hours	EC50	0.0015 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Green algae	Experimental	72 hours	EC50	0.084 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Mysid Shrimp	Experimental	96 hours	LC50	0.071 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Rainbow trout	Experimental	96 hours	LC50	0.036 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Sheepshead Minnow	Experimental	96 hours	LC50	0.18 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Water flea	Experimental	48 hours	EC50	0.42 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Diatom	Experimental	72 hours	NOEC	0.00068 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Green algae	Experimental	72 hours	NOEC	0.0156 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Water flea	Experimental	21 days	NOEC	0.0016 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Activated sludge	Experimental	3 hours	EC50	30.4 mg/l
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Bobwhite quail	Experimental	14 days	LD50	384 ppm diet
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Lettuce	Experimental	17 days	EC50	45 mg/kg (Dry Weight)
2-Octyl-3(2H)- Isothiazolone	26530-20-1	Redworm	Experimental	14 days	LC50	866 mg/kg (Dry Weight)
2-Octyl-3(2H)-	26530-20-1	Soil microbes	Experimental	28 days	EC50	84.1 mg/kg (Dry

Page: 15 of 19

llsothiazolone			(Weight)

12.2. Persistence and degradability

CAS Number	Test type	Duration	Study Type	Test result	Protocol
1344-28-1	Data not	N/A	N/A	N/A	N/A
	availbl-				
	insufficient				
64742-47-8	Estimated	28 days	BOD	69 %BOD/ThO	OECD 301F -
	Biodegradation			D	Manometric
					respirometry
9005-65-6	Experimental	28 days	CO2 evolution	61 %CO2	ISO 14593 Inorg C
	Biodegradation			evolution/THC	Headspace
63148-62-9		N/A	N/A	N/A	N/A
	availbl-				
	insufficient				
9003-11-6	Data not	N/A	N/A	N/A	N/A
	availbl-				
	insufficient				
56-81-5	Experimental	14 days	BOD	63 %BOD/ThO	OECD 301C - MITI
	Biodegradation	-		D	test (I)
8042-47-5	Experimental	28 days	CO2 evolution	0 %CO2	OECD 301B - Modified
	Biodegradation	-		evolution/THC	sturm or CO2
				O2 evolution	
111-42-2	Experimental	28 days	BOD	93 %BOD/ThO	OECD 301F -
	Biodegradation	-		D	Manometric
					respirometry
111-42-2	Experimental	9 days	Dissolv.	98 % removal	OECD 302B Zahn-
	Biodegradation		Organic	of DOC	Wellens/EVPA
			Carbon Deplet		
2682-20-4	Experimental	29 days	CO2 evolution	50 %CO2	OECD 301B - Modified
				evolution/THC	sturm or CO2
				O2 evolution	
2682-20-4	Experimental		Hydrolytic	>1 years (t 1/2)	OECD 111 Hydrolysis
					func of pH
26530-20-1		28 days	BOD	<	OECD 301D - Closed
		,		10 %BOD/ThO	bottle test
				D	
26530-20-1	Experimental	59 days	Dissolv.	88 % removal	OECD 303A -
-]		of DOC	Simulated Aerobic
	Inherent				
	Biodegrad.	I	1	I	1
	1344-28-1 64742-47-8 9005-65-6 63148-62-9 9003-11-6 56-81-5 8042-47-5 111-42-2 111-42-2 2682-20-4 2682-20-4	Data not availbl-insufficient Estimated Biodegradation Data not availbl-insufficient Experimental Biodegradation Data not availbl-insufficient Data not availbl-insufficient Experimental Biodegradation Experimental Biodegradation	Data not availbl-insufficient Estimated Biodegradation Data not availbl-insufficient Experimental Biodegradation Data not availbl-insufficient Data not availbl-insufficient Data not availbl-insufficient Data not availbl-insufficient Experimental Biodegradation Experimental Biodegradation	Data not availbl-insufficient Estimated Biodegradation Estimated Biodegradation Experimental Biodegradation Data not availbl-insufficient Data not availbl-insufficient Data not availbl-insufficient Data not availbl-insufficient Experimental Biodegradation Experimental Biodegradation	Data not availbl-insufficient Estimated Biodegradation 28 days BOD 69 %BOD/ThO D 2005-65-6 Experimental Biodegradation Biodegradation Biodegradation D D D D D D D D D D D D D

12.3 : Bioaccumulative potential

Material	CAS Number	Test type	Duration	Study Type	Test result	Protocol
Aluminum	1344-28-1	Data not	N/A	N/A	N/A	N/A
Oxide (non-		available or				
fibrous)		insufficient for				
		classification				
Hydrotreated	64742-47-8	Data not	N/A	N/A	N/A	N/A
Light		available or				

Petroleum		insufficient for				
Distillates		classification				
Polyethylene	9005-65-6	Modeled		Bioaccumulatio	5	Catalogic TM
Glycol Sorbitan		Bioconcentrati		n factor		
Monooleate		on				
Polyethylene	9005-65-6	Modeled		Log Kow	5.61	Episuite TM
Glycol Sorbitan		Bioconcentrati				
Monooleate		on				
Poly(Dimethyls	63148-62-9	Data not	N/A	N/A	N/A	N/A
iloxane)		available or				
·		insufficient for				
		classification				
Polyethylene-	9003-11-6	Data not	N/A	N/A	N/A	N/A
Polypropylene		available or				
Glycol		insufficient for				
		classification				
Glycerin	56-81-5	Experimental		Log Kow	-1.75	similar to OECD 107
		Bioconcentrati				
		on				
Mineral Oil	8042-47-5	Data not	N/A	N/A	N/A	N/A
		available or				
		insufficient for				
		classification				
Diethanolamin	111-42-2	Experimental		Log Kow	-2.18	OECD 107 log Kow
e		Bioconcentrati				shke flsk mtd
		on				
Methylisothiaz	2682-20-4	Analogous	56 days	Bioaccumulatio	5.75	
olinone		Compound		n factor		
		BCF - Fish				
Methylisothiaz	2682-20-4	Experimental		Log Kow	-0.486	OECD 107 log Kow
olinone		Bioconcentrati				shke flsk mtd
		on				
2-Octyl-3(2H)-	26530-20-1	Experimental		Log Kow	2.92	OECD 117 log Kow
Isothiazolone		Bioconcentrati				HPLC method
		on				

12.4. Mobility in soil

Please contact manufacturer for more details

12.5 Other adverse effects

No information available.

SECTION 13: Disposal considerations

13.1. Disposal methods

In accordance with the Hazardous Substances (Disposal) Notice 2017 and the relevant criteria of the HSNO Act 1996.

Dispose of waste product in a permitted industrial waste facility. As a disposal alternative, incinerate in a permitted waste incineration facility. Proper destruction may require the use of additional fuel during incineration processes. If no other disposal options are available, waste product may be placed in a landfill properly designed for industrial waste. Empty drums/barrels/containers used for transporting and handling hazardous chemicals (chemical substances/mixtures/preparations classified as Hazardous as per applicable regulations) shall be considered, stored, treated & disposed of as hazardous wastes unless otherwise defined by applicable waste regulations. Consult with the respective regulating authorities to determine the available treatment and disposal facilities.

Packaging (that may or may not contain any residual substance) may be lawfully disposed of by householders or other consumers through public or commercial waste collection services.

SECTION 14: Transport Information

New Zealand Land Transport Rule: Dangerous Goods - Road/Rail Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable.
Sub Risk: Not applicable.
Packing Group: Not applicable.

Hazchem Code: Not applicable.

IERG: Not applicable.

International Air Transport Association (IATA) - Air Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable. Sub Risk: Not applicable. Packing Group: Not applicable.

International Maritime Dangerous Goods Code (IMDG) - Marine Transport

UN No.: Not applicable.

Proper Shipping Name: Not applicable.

Class/Division: Not applicable.
Sub Risk: Not applicable.
Packing Group: Not applicable.
Marine Pollutant: Not applicable.

SECTION 15: Regulatory information

HSNO Approval number HSR002670

Group standard name Surface Coatings and Colourants (Subsidiary Hazard) Group Standard 2020

HSNO Hazard classification Refer to Section 2: Hazard identification

NZ Inventory of Chemicals (NZIoC) Status

All ingredients are listed on the New Zealand Inventory of Chemicals.

Controls in accordance with The Health and Safety at Work Act 2015, Health and Safety at Work (Hazardous Substances) Regulations 2017 and the HSNO Act 1996, Hazardous Substances (Hazardous Property Controls) Notice 2017

Certified handler Not required
Location Compliance Certificate Not required
Hazardous atmosphere zone Not required
Fire extinguishers Not required

Emergency response plan 100 L or 100 kg (for Hazardous to the aquatic environment Category 1

substances); or 1 000 L or 1 000 kg (for Acute toxicity Category 4, Skin sensitisation Category 1, Respiratory sensitisation Category 1, Hazardous to the aquatic environment Category 2 or Hazardous to the aquatic environment Category 3 substances); or 10 000 L or 10 000 kg (for Germ cell mutagenicity Category 1, Reproductive toxicity Category 1, Specific target organ toxicity Category 1, Serious eye damage Category 1, Hazardous to the aquatic

environment Category 4 substances)

Secondary containment 100 L or 100 kg (for Hazardous to the aquatic environment Category 1

substances); or 1 000 L or 1 000 kg (for Acute toxicity Category 4, Skin sensitisation Category 1, Respiratory sensitisation Category 1, Hazardous to the aquatic environment Category 2 or Hazardous to the aquatic environment Category 3 substances); or 10 000 L or 10 000 kg (for Germ cell mutagenicity Category 1, Reproductive toxicity Category 1, Specific target organ toxicity Category 1, Serious eye damage Category 1, Hazardous to the aquatic environment Category 4 substances)

Not required

Warning signage

Tracking

100 L or 100 kg (for Hazardous to the aquatic environment Category 1 substances); or 1 000 L or 1 000 kg (for Serious eye damage Category 1, Hazardous to the aquatic environment Category 2 or Hazardous to the aquatic environment Category 3 substances); or 10 000 L or 10 000 kg (for Acute toxicity Category 4 or Hazardous to the aquatic environment Category 4 substances)

SECTION 16: Other information

Revision information:

Complete document review.

Document group:	40-6701-3	Version number:	2.01
Issue Date:	24/07/2025	Supersedes date:	10/03/2025

Key to abbreviations and acronyms

GHS refers to the Globally Harmonised System of Classification and Labelling of Chemicals, 7th revised edition of 2017 **HSNO** means Hazardous Substances and New Organisms Act 1996

The information in this Safety Data Sheet (SDS) is believed to be correct as of the date of issue. TO THE EXTENT PERMITTED BY LAW, 3M MAKES NO WARRANTY, EXPRESSED OR IMPLIED, INCLUDING, BUT NOT LIMITED TO, ANY IMPLIED WARRANTY, OF MERCHANTABILITY OR FITNESS FOR A PARTICULAR PURPOSE OR COURSE OF PERFORMANCE OR USAGE OF TRADE. User is responsible for determining whether the 3M product is fit for a particular purpose and suitable for user's method of use or application. Given the variety of factors that can affect the use and application of a 3M product, some of which are uniquely within the user's knowledge and control, it is essential that the user evaluates the 3M product to determine whether it is fit for a particular purpose and suitable for user's method of use or application. 3M provides information in electronic form as a service to customers. Due to the remote possibility of electronic transfer may have resulted in errors, omissions or alterations in this information; 3M makes no representations as to its completeness or accuracy. In addition, information obtained from a database may not be as current as the information in the SDS available directly from 3M.

3M New Zealand SDS are available at 3M New Zealand Website: http://solutions.3mnz.co.nz